Quadratic Gauss Sums over Finite Commutative Rings

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pure Gauss Sums over Finite Fields

New classes of pairs e,p are presented for which the Gauss sums corresponding to characters of order e over finite fields of characteristic p are pure, i.e., have a real power. Certain pure Gauss sums are explicitly evaluated. §

متن کامل

Contravariantly Finite Resolving Subcategories over Commutative Rings

Contravariantly finite resolving subcategories of the category of finitely generated modules have been playing an important role in the representation theory of algebras. In this paper we study contravariantly finite resolving subcategories over commutative rings. The main purpose of this paper is to classify contravariantly finite resolving subcategories over a henselian Gorenstein local ring;...

متن کامل

Associated Graphs of Modules Over Commutative Rings

Let $R$ be a commutative ring with identity and let $M$ be an $R$-module. In this paper we introduce a new graph associated to modules over commutative rings. We study the relationship between the algebraic properties of modules and their associated graphs. A topological characterization for the completeness of the special subgraphs is presented. Also modules whose associated graph is complete...

متن کامل

Finite Commutative Rings

‡ Every function on a finite residue class ring D/I of a Dedekind domain D is induced by an integer-valued polynomial on D that preserves congruences mod I if and only if I is a power of a prime ideal. If R is a finite commutative local ring with maximal ideal P of nilpotency N satisfying for all a, b∈R, if ab∈ P then a∈ P k , b∈ P j with k+ j ≥min(n,N), we determine the number of functions (as...

متن کامل

NONNIL-NOETHERIAN MODULES OVER COMMUTATIVE RINGS

In this paper we introduce a new class of modules which is closely related to the class of Noetherian modules. Let $R$ be a commutative ring with identity and let $M$ be an $R$-module such that $Nil(M)$ is a divided prime submodule of $M$. $M$ is called a Nonnil-Noetherian $R$-module if every nonnil submodule of $M$ is finitely generated. We prove that many of the properties of Noetherian modul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Number Theory

سال: 2002

ISSN: 0022-314X

DOI: 10.1006/jnth.2001.2752